
A SysML and Clean based Methodology for digital

Circuits Design and Simulation
Zakaria Lakhdara

#1
, Salah Merniz

#2

#
LIRE Laboratory, Computer Science Department, Constantine 2 University

Constantine Algeria
1
lakhdara.z@umc.edu.dz

2
s_merniz@ umc.edu.dz

Abstract— Due to the ever complexity of digital systems, there

is a noticeable need for more abstract and structural mecha-

nisms as well as design methodologies that systematically and

formally derive low level concrete designs from high level ab-

stract ones. To this aim, we present a methodological design

approach that automatically generates a functional HDL code

from SysML diagrams modeling hardware designs. The gener-

ated HDL code is both reliable and executable. While the first

feature remains crucial for low level design refinements, the

second one enables evaluating design performances at early

stages. A case study involving the functional implementation of

an ALU (Arithmetic Logic Unit) through Clean code generated

from high level SysML diagrams is given, to practically show

the potential features of the proposed approach.

Keywords— Digital circuits design, SysML, Clean, Functional

specification, Modeling, Simulation.

I. INTRODUCTION

After the wide and successful application of UML in the

area of software engineering, there is a growing interest in

the use of UML at the high level of abstraction for modeling

hardware designs. To this aim, researchers have created

UML profiles such as UML-SystemC [2], UML-SoC [18],

MARTE [8], or SysML [3] that extend UML with the ap-

propriate constructs to hierarchically describe complex

hardware designs and analyze their properties. Thereafter,

they have created approaches to generate a system level

implementation through imperative intermediate HDL code

such as VHDL [3, 5], Verilog [5, 7] or SystemC [1, 2, 5, 6],

to bridging the gap between UML high level description and

the micro-architecture level description.

The main problem is that, imperative HDLs lack a well-

defined semantic definition and consequently it becomes

very hard to formally deriving thereafter low level design

refinements that reflect the high level requirements (mod-

eled by UML which still lacks a formal semantics). There-

fore, it is necessary first, to validate the generated HDL

code before to proceed toward low level implementations.

While some approaches try to validate the generated HDL

code by translating it to formal models [10], most others use

simulation-based methods to validate such code. Both ap-

proaches present drawbacks. Formal models are mostly

model checking-based and consequently they are still suf-

fering from the state explosion problem, whereas simula-

tion-based methods are very insufficient to cope with the

growing complexity which according to the Moore’s law,

doubles almost every two years. At best, simulation meth-

ods which have also the disadvantage to lengthen the time-

to-market, can only reduce the number of design faults, but

never certify the design correctness.

This work proposes an alternative design methodology

that uses the functional language Clean [13] as HDL at the

system level design and use SysML [12] as a modeling lan-

guage at the top of Clean. An automatic mapping from

SysML diagrams represented as XMI file format to Clean

HDL code is achieved using our proper code generator.

SysML (systems modeling language) is a UML profile

(domain specific modeling language) for system engineer-

ing applications. It reuses a subset of UML 2.0, with exten-

sions; including the notion of block (which replaces the

notion of class), the modeling of requirements and the par-

ametric constraints. The notion of block allows to hierarchi-

cally developing and modularizing complex designs, where-

as the notions of requirements and parametric enable re-

quirements engineering and performance analysis of such

designs. Moreover SysML supports model and data inter-

change via XML Metadata Interchange (XMI) interface. It

is a standard based approach with the aim to improve com-

munications, tool interoperability, and design quality.

Clean has a graph rewriting semantics [11] which is very

attractive for generating a reliable and executable code. This

is very crucial at the system level, from which the synthesis

process starts refining the low level design to produce phys-

ical circuits (which is the aim of this project). Beside its

formal semantics which is also very important for formal

reasoning (to optimize the code and prove its correctness),

Clean provides powerful features that are very useful for

dealing nicely with hardware de-signs. The key features are

given bellow:

 - Function composition: In hardware design, circuits are

built hierarchically in terms of primitive components in the

same way as function composition by application, abstrac-

tion and local naming.

- Type-classes: Provide a convenient mechanism for ab-

stracting over circuit descriptions, and also provide means

to generically deriving specific classes of circuits

- Non-strict semantics: Allows reasoning about descrip-

tions involving unbounded structures. For example signals

can be elegantly implemented as lazy lists (streams).

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.3, pp. 39-44, 2013

Copyright - IPCO

PC
Typewriter

PC
Typewriter
39

- Lazy evaluation: Combined with non-strict semantics,

naturally supports the development and simulation of mutu-

ally dependent descriptions such as cyclic structures (feed-

backs). Lazy evaluation is more amenable to termination

than eager evaluation.

- Parametric polymorphism: Allows generic functional

descriptions to be used in different contexts

- Higher order functions: This feature enables a designer

to structure descriptions in elegant and concise way.

- Functional simulation: A functional specification is di-

rectly executable. It allows the circuit’s behavior to be ob-

served at early stages.

The remainder of this paper is organized as follows: Sec-

tion two discusses the related works. Section three presents

the proposed design methodology. Section four gives a typi-

cal example, and finally section five concludes this work.

II. RELATED WORK

Most of related works on hardware design using UML as

a high level modeling language generate imperative HDL

codes at the system level. In [1], the authors pro-posed an

approach for automatic generation of SystemC code from

UML diagrams at early stage of SoCs (Systems on Chip)

designs, using two levels of abstraction: In the first level,

they use UML sequence diagrams to generate the SystemC

code which is dedicated to algorithmic space exploration

and simulation. In the second level, they implement the

messages occurring in sequence diagrams using UML activ-

ity diagrams where actions are expressed in the C++ Action

Language (AL). The goal is to generate a full SystemC code

for both simulation and synthesis. In [3], the authors pro-

pose a mechanical technique to map SysML models into

SystemC code through XMI file format. The works devel-

oped in [4] and [9] present two similar views that generate a

synthesizable code (VHDL for the former and Handel-C for

the later) from UML models. In [5], the authors use UML-

HD (UML profile, dedicated for hardware) for modeling

asynchronous hardware designs and an approach that auto-

matically generates a Haste HDL code from UML-HD

models in XMI file format. In [6], the authors propose a

methodology for modeling digital designs, using UML dia-

grams from which they automatically generate a SystemC

code for verification, and VerilogHDL / VHDL for FPGA

implementation through XMI file format. The research work

presented in [7], describe a prototype tool that automatically

generates a Verilog HDL code and the corresponding Sys-

tem Verilog assertions (for correctness purpose) from UML

models.

All these approaches generate an imperative code which

requires a complex verification step before generating a

correct synthesizable one.

III. DESIGN METHODOLOGY

The design methodology proposed here follows the top

down layered approach. It uses SysML at the high level to

model the structural aspect of hardware designs, and uses

Clean as a functional HDL at the system level to formally

implement (to give a semantics in terms of Graph Rewriting)

SysML models taken as XMI file format. The resulting

functional HDL code which is both reliable (directly verifi-

able through Clean theorem prover) and executable, will be

used for three purposes: For further design synthesis (In this

work we limit our self only to the generation of the func-

tional HDL code, although the complete project proceeds

toward netlist generation using Functional Graph Rewriting

Systems), for formal verification and for functional simula-

tion. The transformational design flow is depicted in Fig. 1.

Fig. 1 Transformational design flow

A. Modeling with SysML

SysML provides attractive features for modeling both the

behavior and the structure of hardware designs [14]. This

work exploits only some structural diagrams (the Block

Definition Diagram (BDD) and the Internal Block Diagram

(IBD)) to describe the structural aspect of hardware designs.

The notion of SysML Block implements perfectly the con-

cept of module that performs a well-defined function and

communicates with well-defined interfaces (defined by its

inputs/outputs). Thereafter; the SysML block fits adequately

the concept of modularity which is very important for de-

veloping complex designs.

Fig. 2 SysML Block representation

XM

I

SysML

(Informal description)

Clean HDL code

(Functional description)

Simulation
Further Synthesis

(FGRS)

Formal

Verification

Netlist

Generation Simulation

Formal

Verification

PC
Typewriter
40

A circuit is represented by a Block (stereotyped as

<<block>>) whose Inputs/Outputs are specified using the

SysML FlowPorts elements. The types of these FlowPorts

are specified using the SysML DataType element. The task

performed by the circuit is specified by the block’s Opera-

tion which takes its parameters from the input FlowPorts

and returns the result at the output FlowPorts. Fig. 2 shows

a circuit description using SysML block representation. This

circuit contains three FlowPorts: FP1, FP2, and FP3, with

type Bit and performs an operation denoted Op that takes

two inputs: FP1 and FP2, and returns one output: FP3.

Such circuit description declares also two sub-circuits de-

noted Circuit1 and Circuit2, and a singleton DataType Bit

indicating the type of the FlowPorts involved in both the

circuit and its sub-circuits.

Fig. 3 Block Definition diagram of Circuit

The BDD is used to hierarchically decompose a circuit

using the notions of block and composition relationship

(between a block and its components). Such hierarchical

description is extremely important for developing complex

digital circuits using the top down approach. Further sub-

blocs decomposition is identical to that of the main block.

Fig. 3 gives an example describing the circuit represented in

Fig. 2 and its components.

Fig. 4 Internal Block Diagram of Circuit

The details of the internal block structure could be shown

using the IBD where the different internal sub-blocks are

connected through their FlowPorts using the SysML Con-

nector element. Fig. 4 shows the internal structure of the

block Circuit represented in Fig. 3.

B. Mapping SysML Model to Clean Specification

The methodology derives a functional circuit specifica-

tion from SysML models (using BDDs and IBDs) describ-

ing the structural aspect of a hardware design. The function-

al circuit specification is a clean module which contains a

collection of function definitions and types. The generation

process of the functional code from a high level SysML

description is shown in Fig. 5; it involves three parts: A

library, a parser and a code generator.

1) The Library: The library contains the functional descrip-

tion (structural aspect) of the primitive components (gates,

registers, memories, etc), and their types. A complex circuit

is built upon these primitive components using a top down

decomposition and a bottom up design. Once built, a circuit

is submitted to further activities such as simulation, verifica-

tion or synthesis. Once simulated or verified, a circuit de-

scription is saved into the library as well. This enrichment

helps in minimizing the design cost.

Fig. 5 Code generation with CleanSG

2) The Parser: The parser facilitates the process of manip-

ulating an XMI file. It reads the XMI file and creates a doc-

ument named DOM (Document Object Model) which con-

tains a tree of object Nodes. The DOM delivers a complete

parsed representation of the XMI file which can be used

later by the code generator to access the XMI file compo-

nents (entities, elements, attributes, etc). For more details

about DOM parsers see [15].

3) The Code Generator: The SysML circuit model pro-

vides the necessary information for generating the corre-

sponding Clean module. Initially, the code generator creates

an empty module and progressively fills it using the func-

tions describing the blocks involved in the circuit model and

their types definition. The complete module construction

consists of traversing the DOM (equivalently, decomposing

SysML model

XMI

Parser Hardware Library

Code generator DOM

Clean code

(Functional description)

PC
Typewriter
41

the main SysML block) till the lowest level of hierarchy. At

each level, and for each block, the code generator launches a

scanning task to search for a corresponding Clean function

in the library. If so, then the target function and its type are

inserted in the module, otherwise the corresponding Clean

function is created automatically using the information pro-

vided by the SysML block representation shown in Fig. 2

(the block/sub-blocks Operation and the FlowPorts with

their types). The main block will be interpreted as a function

composition by application, abstraction and local naming;

using the Clean let expression described in Fig. 6.

TABLE I
Correspondences between SysML and Clean

SysML Block representation Clean

Block Function

Input FlowPorts Function arguments

Output FlowPorts Function results

DataType Type definition

Blocks composition Functions composition

Functional HDLs have been efficiently used in the con-

text of hardware design. In this work, we will propose a

template function defined based on the correspondences

between SysML and Clean (see Table 1). We use the Clean

let expression as a powerful mechanism for capturing most

of the important structural aspects of a digital circuit such as

composition, parallelism, and hierarchy. The full definition

is given below.

Fig. 6 Function template

IV. CASE STUDY

This section discusses a case study involving the func-

tional implementation of an ALU (Arithmetic Logic Unit)

through Clean code which is generated from high level

SysML diagrams.

The modeling phase is performed using Altova UModel

framework. This later enables designing application models

in both UML and SysML, and exporting them as XMI file

format (for more details see [17]).

The ALU being designed operates on words (of an arbi-

trary size). It takes as input two words: as and bs, a carry in

bit ci, and two bits s0 and s1 for selecting the operation to

be executed. It performs four operations: Addition, And, Or

and Not. Fig. 7 represents the BDD of the ALU circuit; it is

composed of three parts: a logic unit (LU), a word adder and

a multiplexer four-to-one.

Fig. 7 IBD of the circuit WALU

After decomposing the circuit into several blocks, the in-

ternal structure of the main block and its sub-blocks is

shown using the IBD. Fig. 8 represents the IBD of the block

WALU. The IBDs of the other blocks are done by the same

way.

Fig. 8 IBD of the circuit WALU

 After completing the modeling phase, the circuit model

is exported as an XMI file format. Our tool CleanSG uses

this file to generate the corresponding functional circuit

specification. In this case study the circuit model shows that

the circuit is composed of: Xor, Not, WNot, And, WAnd, Or,

WOr, Mux2, WMux2, WMux4, Halfadder, Fulladder,

Wordadder, WLU, and uses two data types Bit and Word.

The library of CleanSG contains the definitions of these

types and the functional specifications of these digital com-

ponents except for the blocks Wordadder, WLU and the

WALU. To generate the functional circuit specification, the

code generator creates an empty Clean module and fills it

from the library with the definitions of the types and the

FuncName :: {arg_type}  result _type

FuncName {arg} = let

 Val1 = exp1

 ⋮

 Valn

 = expn

 in (exp)

PC
Typewriter
42

functional specifications of the components involved in the

circuit model. The missing ones are generated automatically,

inserted in the module and saved in the library.

Here is the complete functional specification generated

for the circuit ALU:

module WALU // module name

// types definitions

:: Bit :== Int

Bit = 0

Bit = 1

:: Word :== [Bit]

//functions describing the circuit’s

 components

Xor :: Bit Bit -> Bit

Xor a 0 => a

Xor a 1 => Not a

Not :: Bit -> Bit

Not 0 => 1

Not 1 => 0

WNot :: Word -> Word

WNot [] = []

WNot [x:xs] => let

 s = Not x

 ss = WNot xs

in([s:ss])

And :: Bit Bit -> Bit

And a 0 => 0

And a 1 => a

WAnd :: Word Word -> Word

WAnd [] [] = []

WAnd [x:xs] [y:ys] => let

 s = And x y

 ss = WAnd xs ys

in([s:ss])

Or :: Bit Bit -> Bit

Or a 0 => a

Or a 1 => 1

WOr :: Word Word -> Word

WOr [] [] = []

WOr [x:xs] [y:ys] => let

 s = Or x y

 ss = WOr xs ys

in([s:ss])

Mux2 :: Bit Bit Bit -> Bit

Mux2 a b c => let

 s = Or (And a (Not c)) (And b c)

in(s)

WMux2 :: Word Word Bit -> Word

WMux2 [] [] c => []

WMux2 [x:xs] [y:ys] c => let

 s = Mux2 x y c

 ss = WMux2 xs ys c

in([s:ss])

WMux4 ::Word Word Word Word Bit Bit -> Word

WMux4 [] [] [] [] c1 c2 => []

WMux4 a b c d c1 c2 => let

 s = WMux2 (WMux2 a c c1)(WMux2 b d c1) c2

in(s)

Halfadder :: Bit Bit -> (Bit,Bit)

Halfadder a b => let

 s = Xor a b

 c = And a b

in (c,s)

Fulladder :: Bit Bit Bit -> (Bit,Bit)

Fulladder x y ci => let

 (c1,s1) = Halfadder x y

 (c2,s) = Halfadder s1 ci

 co = Xor c1 c2

in (co,s)

Wordadder :: Word Word Bit -> (Bit,Word)

Wordadder [] [] ci => (0,[])

Wordadder [x:xs] [y:ys] ci => let

 (co,s) = Fulladder x y c1

 (c1,ss) = Wordadder xs ys ci

in (co,[s:ss])

WLU :: Word Word -> (Word,Word,Word)

WLU [] [] => ([],[],[])

WLU a b => let

 notb = WNot b

 ab = WAnd a b

 aoub = WOr a b

in (ab,aoub,notb)

// the main function

WALU :: Word Word Bit Bit Bit ->(Word,Bit)

WALU [] [] ci f0 f1 => ([],0)

WALU a b ci f0 f1 => let

 (co,som) = Wordadder a b ci

 (ab,aoub,notb) = WLU a b

 res = WMux4 ab aoub notb som f0 f1

in (res,co)

Start = WALU as bs ci s0 s1

To simulate the designed circuit, we simply execute its

functional specification by invoking the main function

WALU using the following code:

 Start = WALU as bs ci s0 s1

 Where
 as = [0,0,0,0,0,0,1,1]

 bs = [0,0,0,0,0,0,0,1]

 ci = 0

 s1 = 1

 s2 = 1

To verify the four operations performed by the ALU, for

each operation, we set the corresponding operation code and

we invoke the function WALU.

PC
Typewriter
43

In order to perform several tests, we have defined a

higher-order function called test. This function applies the

function WALU on a list of different arguments. The defini-

tion of the function test is given bellow.

Test :: (Word Word Bit Bit Bit ->(Bit,Word))

 [Word] [Word] [Bit] [Bit] [Bit] ->

hkkkkkhlk[(Bit,Word)]

Test f [] [] [] [] [] = []

Test f [a:as] [b:bs] [c:cs] [f:fs] [s:ss] =

 [f a b c f s : Test f as bs cs fs ss]

To execute the function test, we invoke it using the fol-

lowing code:

Start = Test WALU as bs ci s1 s2

 where

as =[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],

 [0,0,0,0,0,0,1,0],[0,0,0,0,0,0,1,1]]

bs =[[0,0,0,0,0,0,1,1],[0,0,0,0,0,0,1,0],

 [0,0,0,0,0,0,0,1],[0,0,0,0,0,0,0,1]]

ci = [0,0,1,0]

s1 = [0,1,0,1]

s2 = [0,0,1,1]

Invoking the function test with these arguments enables

the execution of the function WALU four times. At each

time, the function WALU performs a different operation on

different values of the two data words as and bs. As a result,

we get a list containing the result of the four operations

performed by the function WALU.

 (co,res) = [(0,[0,0,0,0,0,0,1,1]),

 (0,[0,0,0,0,0,0,1,1]),

 (1,[1,1,1,1,1,1,1,0]),

 (0,[0,0,0,0,0,1,0,0])]

V. CONCLUSION

In this paper we have presented a methodology for digi-

tal circuits design based on SysML and the functional lan-

guage Clean. It involves a modeling technique based on two

SysML structural diagrams BDD and IBD and a technique

for automatic Clean code generation from a SysML model

(in XMI file format). This transformation is performed by

our proper tool CleanSG. The design methodology has been

evaluated by means of a typical case study, involving a

digital circuit say an ALU where a Clean code has been

derived from SysML model describing this ALU.

This work gives a first contribution towards a research

topic that has not been investigated so far, namely UML to

functional HDLs. It combines the powerful features of

SysML and the functional language Clean. Beside the avail-

ability of SysML documentation and tools, our modeling

technic is simple and easy to use. The automatic code gen-

eration from an electronic schema and the reuse of the saved

specifications in the library minimize the circuit design time.

Saving the generated specifications in the library enriches it

every time we design a circuit. The generated functional

circuit specification gives the possibility to simulate the

circuit.

Our future work will focus on enhancements toward

modeling with SysML and code generation, extensions for

formal verification, although the complete project proceeds

toward Functional Graph Rewriting Systems.

REFERENCES

[1] F. Boutekkouk. ―Automatic SystemC Code Generation from UML
Models at Early Stages of Systems on Chip Design‖, International
Journal of Computer Applications (0975 – 8887) Vol. 8 – No.6,
October. 2010.

[2] F. Mischkalla, D. He, W. Mueller. ―A UML Profile for SysML-Based
Comodeling for Embedded Systems Simulation and Synthesis‖, in
Proc. 1st Workshop on Model Based Engineering for Embedded
Systems Design (M-BED), Dresden, Germany,Mar. 2010.

[3] Mauro Prevostini, Elena Zamsa. ―SysML Profile for SoC Design and
SystemC Transformation‖, ALaRI, Faculty of Informatics University
of Lugano via G. Buffi 13, CH-6904 Lugano, May 11, 2007

[4] Tomás G. Moreira, Marco A. Wehrmeister, Carlos E. Pereira, Jean-
François Pétin, and Eric Levrat. ―Generating VHDL Source Code
from UML Models of Embedded Systems―,IFIP Advances in
Information and Communication Technology Volume 329, pp 125-
136. 2010.

[5] Kim Sandström and Ian Oliver. ―A UML Profile for Asynchronous
Hardware Design‖, Lecture Notes in Computer Science Volume
4017, pp 15-26. 2006.

[6] N. Shimizu, M. Ikura, W. Wiriya, and S. Chivapreecha, ―A new logic
circuit design methodology with uml‖, in Proc. ITC-CSCC 2009,
pp.62-65.

[7] Lun Li, Frank P Coyle, and Mitchell A Thornton. ―UML to
systemverilog synthesis for embedded system models with support
for assertion generation‖. In Proc. ECSI Forum on Design Languages
2007, paper 10 on CD-ROM.

[8] Aulagnier D., Koudri A., Lecomte S., Soulard P., Champeau J., Vidal
G., Perrouin G., and Leray P. ―Soc/sopc development using mdd and
marte profile‖. In Model Driven Engineering for Distributed Real-
time Embedded Systems. Hermes, 2009.

[9] Tim Schattkowsky, Jan Hendrik Hausmann, and Gregor Engels.

―Using UML activities for System-on-Chip Design and Synthesis‖,

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 737 –
752, 2006.

[10] Salah MERNIZ. ― Méthodologie de Vérification Formelle Pour les

Microarchitectures RISC Approche Fonctionnelle―, Phd. Thesis,
Computer science Department, Constantine 2 University, Constantine

Algérie, 2008.

[11] R.Plasmeijer, M.V. Eekelen, ―Functional programming and parallel
graph rewriting‖. Addiso Wesley 1993.

[12] The OMG website. [Online]. Available: http://www.omgsysml.org/.

[13] The Clean website. [Online]. Available:
http://wiki.clean.cs.ru.nl/Clean.

[14] Systems Modeling Language (SysML) Specification. OMG
document: ad/2006-03-08-01, version 1. Draft, April 2006.

[15] Timothy R. Fisher. LE GUIDE DE SURVIE Java L’ESSENTIEL DU
CODE ET DES COMMANDES. ISBN : 978-2-7440-4004-7.
Copyright© CampusPress, 2009.

[16] Rinus Plasmeijer, Marko van Eekelen, ―Clean language repport ―,
Version 2.1, November 2002.

[17] The Altova UModel website. [Online]. Available:
http://www.altova.com/umodel.html.

[18] UML Profile for System on a Chip (SOC). OMG Available
Specification, version 1.0.1 formal /06-08-01, August 2006.

PC
Typewriter
44

http://www.omgsysml.org/
http://wiki.clean.cs.ru.nl/Clean
http://www.altova.com/umodel.html

