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Abstract— Due to the ever complexity of digital systems, there 

is a noticeable need for more abstract and structural mecha-

nisms as well as design methodologies that systematically and 

formally derive low level concrete designs from high level ab-

stract ones. To this aim, we present a methodological design 

approach that automatically generates a functional HDL code 

from SysML diagrams modeling hardware designs. The gener-

ated HDL code is both reliable and executable. While the first 

feature remains crucial for low level design refinements, the 

second one enables evaluating design performances at early 

stages. A case study involving the functional implementation of 

an ALU (Arithmetic Logic Unit) through Clean code generated 

from high level SysML diagrams is given, to practically show 

the potential features of the proposed approach. 

 

Keywords— Digital circuits design, SysML, Clean, Functional 

specification, Modeling, Simulation. 

I. INTRODUCTION 

After the wide and successful application of UML in the 

area of software engineering, there is a growing interest in 

the use of UML at the high level of abstraction for modeling 

hardware designs. To this aim, researchers have created 

UML profiles such as UML-SystemC [2], UML-SoC [18], 

MARTE [8], or SysML [3] that extend UML with the ap-

propriate constructs to hierarchically describe complex 

hardware designs and analyze their properties. Thereafter, 

they have created approaches to generate a system level 

implementation through imperative intermediate HDL code 

such as VHDL [3, 5], Verilog [5, 7] or SystemC [1, 2, 5, 6], 

to bridging the gap between UML high level description and 

the micro-architecture level description. 

The main problem is that, imperative HDLs lack a well-

defined semantic definition and consequently it becomes 

very hard to formally deriving thereafter low level design 

refinements that reflect the high level requirements (mod-

eled by UML which still lacks a formal semantics). There-

fore, it is necessary first, to validate the generated HDL 

code before to proceed toward low level implementations. 

While some approaches try to validate the generated HDL 

code by translating it to formal models [10], most others use 

simulation-based methods to validate such code. Both ap-

proaches present drawbacks. Formal models are mostly 

model checking-based and consequently they are still suf-

fering from the state explosion problem, whereas simula-

tion-based methods are very insufficient to cope with the 

growing complexity which according to the Moore’s law, 

doubles almost every two years. At best, simulation meth-

ods which have also the disadvantage to lengthen the time-

to-market, can only reduce the number of design faults, but 

never certify the design correctness.  

This work proposes an alternative design methodology 

that uses the functional language Clean [13] as HDL at the 

system level design and use SysML [12] as a modeling lan-

guage at the top of Clean.  An automatic mapping from 

SysML diagrams represented as XMI file format to Clean 

HDL code is achieved using our proper code generator. 

SysML (systems modeling language) is a UML profile 

(domain specific modeling language) for system engineer-

ing applications. It reuses a subset of UML 2.0, with exten-

sions; including the notion of block (which replaces the 

notion of class), the modeling of requirements and the par-

ametric constraints. The notion of block allows to hierarchi-

cally developing and modularizing complex designs, where-

as the notions of requirements and parametric enable re-

quirements engineering and performance analysis of such 

designs. Moreover SysML supports model and data inter-

change via XML Metadata Interchange (XMI) interface. It 

is a standard based approach with the aim to improve com-

munications, tool interoperability, and design quality.  

Clean has a graph rewriting semantics [11] which is very 

attractive for generating a reliable and executable code. This 

is very crucial at the system level, from which the synthesis 

process starts refining the low level design to produce phys-

ical circuits (which is the aim of this project). Beside its 

formal semantics which is also very important for formal 

reasoning (to optimize the code and prove its correctness), 

Clean provides powerful features that are very useful for 

dealing nicely with hardware de-signs. The key features are 

given bellow: 

 - Function composition:  In hardware design, circuits are 

built hierarchically in terms of primitive components in the 

same way as function composition by application, abstrac-

tion and local naming.  

- Type-classes: Provide a convenient mechanism for ab-

stracting over circuit descriptions, and also provide means 

to generically deriving specific classes of circuits 

- Non-strict semantics: Allows reasoning about descrip-

tions involving unbounded structures.  For example signals 

can be elegantly implemented as lazy lists (streams).  
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- Lazy evaluation: Combined with non-strict semantics, 

naturally supports the development and simulation of mutu-

ally dependent descriptions such as cyclic structures (feed-

backs). Lazy evaluation is more amenable to termination 

than eager evaluation. 

- Parametric polymorphism: Allows generic functional 

descriptions to be used in different contexts 

-  Higher order functions: This feature enables a designer 

to structure descriptions in elegant and concise way. 

-  Functional simulation: A functional specification is di-

rectly executable. It allows the circuit’s behavior to be ob-

served at early stages. 

The remainder of this paper is organized as follows: Sec-

tion two discusses the related works. Section three presents 

the proposed design methodology. Section four gives a typi-

cal example, and finally section five concludes this work. 

II. RELATED WORK 

Most of related works on hardware design using UML as 

a high level modeling language generate imperative HDL 

codes at the system level. In [1], the authors pro-posed an 

approach for automatic generation of SystemC code from 

UML diagrams at early stage of SoCs (Systems on Chip) 

designs, using two levels of abstraction: In the first level, 

they use UML sequence diagrams to generate the SystemC 

code which is dedicated to algorithmic space exploration 

and simulation. In the second level, they implement the 

messages occurring in sequence diagrams using UML activ-

ity diagrams where actions are expressed in the C++ Action 

Language (AL). The goal is to generate a full SystemC code 

for both simulation and synthesis. In [3], the authors pro-

pose a mechanical technique to map SysML models into 

SystemC code through XMI file format. The works devel-

oped in [4] and [9] present two similar views that generate a 

synthesizable code (VHDL for the former and Handel-C for 

the later) from UML models. In [5], the authors use UML-

HD (UML profile, dedicated for hardware) for modeling 

asynchronous hardware designs and an approach that auto-

matically generates a Haste HDL code from UML-HD 

models in XMI file format. In [6], the authors propose a 

methodology for modeling digital designs, using UML dia-

grams from which they automatically generate a SystemC 

code for verification, and VerilogHDL / VHDL for FPGA 

implementation through XMI file format. The research work 

presented in [7], describe a prototype tool that automatically 

generates a Verilog HDL code and the corresponding Sys-

tem Verilog assertions (for correctness purpose) from UML 

models. 

All these approaches generate an imperative code which 

requires a complex verification step before generating a 

correct synthesizable one. 

III. DESIGN METHODOLOGY 

The design methodology proposed here follows the top 

down layered approach. It uses SysML at the high level to 

model the structural aspect of hardware designs, and uses 

Clean as a functional HDL at the system level to formally 

implement (to give a semantics in terms of Graph Rewriting) 

SysML models taken as XMI file format. The resulting 

functional HDL code which is both reliable (directly verifi-

able through Clean theorem prover) and executable, will be 

used for three purposes: For further design synthesis (In this 

work we limit our self only to the generation of the func-

tional HDL code, although the complete project proceeds 

toward netlist generation using Functional Graph Rewriting 

Systems), for formal verification and for functional simula-

tion. The transformational design flow is depicted in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Transformational design flow 

A. Modeling with SysML 

SysML provides attractive features for modeling both the 

behavior and the structure of hardware designs [14]. This 

work exploits only some structural diagrams (the Block 

Definition Diagram (BDD) and the Internal Block Diagram 

(IBD)) to describe the structural aspect of hardware designs. 

The notion of SysML Block implements perfectly the con-

cept of module that performs a well-defined function and 

communicates with well-defined interfaces (defined by its 

inputs/outputs). Thereafter; the SysML block fits adequately 

the concept of modularity which is very important for de-

veloping complex designs. 

 

Fig. 2 SysML Block representation 

XM

I 

SysML 

(Informal description) 

 

Clean HDL code 

(Functional description) 

Simulation 
Further Synthesis 

(FGRS) 

Formal  

Verification 

Netlist  

Generation Simulation 

 

Formal  

Verification 

 

PC
Typewriter
40



A circuit is represented by a Block (stereotyped as 

<<block>>) whose Inputs/Outputs are specified using the 

SysML FlowPorts elements. The types of these FlowPorts 

are specified using the SysML DataType element. The task 

performed by the circuit is specified by the block’s Opera-

tion which takes its parameters from the input FlowPorts 

and returns the result at the output FlowPorts. Fig. 2 shows 

a circuit description using SysML block representation. This 

circuit contains three FlowPorts: FP1, FP2, and FP3, with 

type Bit and performs an operation denoted Op that takes 

two inputs: FP1 and FP2, and returns one output: FP3. 

Such circuit description declares also two sub-circuits de-

noted Circuit1 and Circuit2, and a singleton DataType Bit 

indicating the type of the FlowPorts involved in both the 

circuit and its sub-circuits. 

 

Fig. 3 Block Definition diagram of Circuit 

The BDD is used to hierarchically decompose a circuit 

using the notions of block and composition relationship 

(between a block and its components). Such hierarchical 

description is extremely important for developing complex 

digital circuits using the top down approach. Further sub-

blocs decomposition is identical to that of the main block. 

Fig. 3 gives an example describing the circuit represented in 

Fig. 2 and its components.   

 

Fig. 4 Internal Block Diagram of  Circuit 

The details of the internal block structure could be shown 

using the IBD where the different internal sub-blocks are 

connected through their FlowPorts using the SysML Con-

nector element. Fig. 4 shows the internal structure of the 

block Circuit represented in Fig. 3. 

B. Mapping SysML Model to Clean Specification 

The methodology derives a functional circuit specifica-

tion from SysML models (using BDDs and IBDs) describ-

ing the structural aspect of a hardware design. The function-

al circuit specification is a clean module which contains a 

collection of function definitions and types. The generation 

process of the functional code from a high level SysML 

description is shown in Fig. 5; it involves three parts: A 

library, a parser and a code generator.   

1)  The Library:  The library contains the functional descrip-

tion (structural aspect) of the primitive components (gates, 

registers, memories, etc), and their types. A complex circuit 

is built upon these primitive components using a top down 

decomposition and a bottom up design. Once built, a circuit 

is submitted to further activities such as simulation, verifica-

tion or synthesis. Once simulated or verified, a circuit de-

scription is saved into the library as well. This enrichment 

helps in minimizing the design cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Code generation with CleanSG 

2)  The Parser:  The parser facilitates the process of manip-

ulating an XMI file. It reads the XMI file and creates a doc-

ument named DOM (Document Object Model) which con-

tains a tree of object Nodes. The DOM delivers a complete 

parsed representation of the XMI file which can be used 

later by the code generator to access the XMI file compo-

nents (entities, elements, attributes, etc). For more details 

about DOM parsers see [15]. 

3)  The Code Generator:  The SysML circuit model pro-

vides the necessary information for generating the corre-

sponding Clean module. Initially, the code generator creates 

an empty module and progressively fills it using the func-

tions describing the blocks involved in the circuit model and 

their types definition. The complete module construction 

consists of traversing the DOM (equivalently, decomposing 
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the main SysML block) till the lowest level of hierarchy. At 

each level, and for each block, the code generator launches a 

scanning task to search for a corresponding Clean function 

in the library. If so, then the target function and its type are 

inserted in the module, otherwise the corresponding Clean 

function is created automatically using the information pro-

vided by the SysML block representation shown in Fig. 2 

(the block/sub-blocks Operation and the FlowPorts with 

their types). The main block will be interpreted as a function 

composition by application, abstraction and local naming; 

using the Clean let expression described in Fig. 6. 

TABLE I 
Correspondences between SysML and Clean  

SysML Block representation Clean 

Block  Function 

Input FlowPorts   Function  arguments 

Output FlowPorts  Function  results 

DataType Type definition 

Blocks composition  Functions composition 

Functional HDLs have been efficiently used in the con-

text of hardware design. In this work, we will propose a 

template function defined based on the correspondences 

between SysML and Clean (see Table 1). We use the Clean 

let expression as a powerful mechanism for capturing most 

of the important structural aspects of a digital circuit such as 

composition, parallelism, and hierarchy.  The full definition 

is given below. 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Function template  

IV. CASE STUDY 

This section discusses a case study involving the func-

tional implementation of an ALU (Arithmetic Logic Unit) 

through Clean code which is generated from high level 

SysML diagrams. 

The modeling phase is performed using Altova UModel 

framework. This later enables designing application models 

in both UML and SysML, and exporting them as XMI file 

format (for more details see [17]).  

The ALU being designed operates on words (of an arbi-

trary size). It takes as input two words: as and bs, a carry in 

bit ci, and two bits s0 and s1 for selecting the operation to 

be executed. It performs four operations: Addition, And, Or 

and Not.  Fig. 7 represents the BDD of the ALU circuit; it is 

composed of three parts: a logic unit (LU), a word adder and 

a multiplexer four-to-one. 

 
Fig. 7 IBD of the circuit WALU 

After decomposing the circuit into several blocks, the in-

ternal structure of the main block and its sub-blocks is 

shown using the IBD. Fig. 8 represents the IBD of the block 

WALU. The IBDs of the other blocks are done by the same 

way. 

 
Fig. 8 IBD of the circuit WALU 

 After completing the modeling phase, the circuit model 

is exported as an XMI file format. Our tool CleanSG uses 

this file to generate the corresponding functional circuit 

specification. In this case study the circuit model shows that 

the circuit is composed of: Xor, Not, WNot, And, WAnd, Or, 

WOr, Mux2, WMux2, WMux4, Halfadder, Fulladder, 

Wordadder, WLU, and uses two data types Bit and Word. 

The library of CleanSG contains the definitions of these 

types and the functional specifications of these digital com-

ponents except for the blocks Wordadder, WLU and the 

WALU. To generate the functional circuit specification, the 

code generator creates an empty Clean module and fills it 

from the library with the definitions of the types and the 

FuncName  ::  {arg_type}  result _type 

FuncName  {arg}  =  let 

            Val1  =  exp1 

                ⋮                    

            Valn
 
 =  expn 

       in (exp) 
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functional specifications of the components involved in the 

circuit model. The missing ones are generated automatically, 

inserted in the module and saved in the library. 

Here is the complete functional specification generated 

for the circuit ALU: 

module WALU // module name   

 

// types definitions  

:: Bit :== Int 

Bit = 0 

Bit = 1 

:: Word :== [Bit] 

 

//functions describing the circuit’s  

     components   

Xor :: Bit Bit -> Bit 

Xor a 0 => a 

Xor a 1 => Not a 

Not :: Bit -> Bit 

Not 0 => 1 

Not 1 => 0 

WNot :: Word -> Word 

WNot [] = [] 

WNot [x:xs] => let 

    s = Not x   

    ss = WNot xs 

in([s:ss]) 

And :: Bit Bit -> Bit 

And a 0 => 0 

And a 1 => a 

WAnd :: Word Word -> Word 

WAnd [] [] = [] 

WAnd [x:xs] [y:ys] => let 

    s = And x y  

    ss = WAnd xs ys 

in([s:ss]) 

Or :: Bit Bit -> Bit 

Or a 0 => a 

Or a 1 => 1 

WOr :: Word Word -> Word 

WOr [] [] = [] 

WOr [x:xs] [y:ys] => let 

    s = Or x y  

    ss = WOr xs ys 

in([s:ss]) 

Mux2 :: Bit Bit Bit -> Bit          

Mux2 a b c => let 

   s = Or (And a (Not c)) (And b c) 

in(s) 

WMux2 :: Word Word Bit -> Word 

WMux2 [] [] c => [] 

WMux2 [x:xs] [y:ys] c => let 

    s = Mux2 x y c  

    ss = WMux2 xs ys c  

in([s:ss]) 

 

WMux4 ::Word Word Word Word Bit Bit -> Word 

WMux4 [] [] [] [] c1 c2 => [] 

WMux4 a b c d c1 c2 => let  

 s = WMux2 (WMux2 a c c1)(WMux2 b d c1) c2 

in(s) 

 

Halfadder :: Bit Bit -> (Bit,Bit) 

Halfadder a b => let 

    s = Xor a b 

    c = And a b 

in (c,s) 

 

Fulladder :: Bit Bit Bit -> (Bit,Bit)  

Fulladder x y ci => let 

    (c1,s1) = Halfadder x y  

    (c2,s) = Halfadder s1 ci  

    co = Xor c1 c2  

in (co,s) 

 

Wordadder :: Word Word Bit -> (Bit,Word)  

Wordadder [] [] ci => (0,[]) 

Wordadder [x:xs] [y:ys] ci => let 

    (co,s) = Fulladder x y c1  

    (c1,ss) = Wordadder xs ys ci  

in (co,[s:ss]) 

 

WLU :: Word Word -> (Word,Word,Word)  

WLU [] [] => ([],[],[]) 

WLU a b => let 

    notb = WNot b  

    ab = WAnd a b  

    aoub = WOr a b  

in (ab,aoub,notb) 

 

// the main function   

WALU :: Word Word Bit Bit Bit ->(Word,Bit)  

WALU [] [] ci f0 f1 => ([],0) 

WALU a b ci f0 f1 => let 

    (co,som) = Wordadder a b ci  

    (ab,aoub,notb) = WLU a b  

    res = WMux4 ab aoub notb som f0 f1  

in (res,co) 

 

Start = WALU as bs ci s0 s1 

 

To simulate the designed circuit, we simply execute its 

functional specification by invoking the main function 

WALU using the following code: 

  Start = WALU as bs ci s0 s1 

            Where 
         as = [0,0,0,0,0,0,1,1] 

         bs = [0,0,0,0,0,0,0,1] 

         ci = 0 

         s1 = 1 

         s2 = 1 

To verify the four operations performed by the ALU, for 

each operation, we set the corresponding operation code and 

we invoke the function WALU.    
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In order to perform several tests, we have defined a 

higher-order function called test. This function applies the 

function WALU on a list of different arguments. The defini-

tion of the function test is given bellow. 

Test :: (Word Word Bit Bit Bit ->(Bit,Word)) 

         [Word] [Word] [Bit] [Bit] [Bit] ->   

hkkkkkhlk[(Bit,Word)]                        

Test f [] [] [] [] [] = [] 

Test f [a:as] [b:bs] [c:cs] [f:fs] [s:ss] = 

      [f a b c f s : Test f as bs cs fs ss] 

To execute the function test, we invoke it using the fol-

lowing code: 

Start = Test  WALU  as bs ci s1 s2 

  where  

as =[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1], 

     [0,0,0,0,0,0,1,0],[0,0,0,0,0,0,1,1]]            

bs =[[0,0,0,0,0,0,1,1],[0,0,0,0,0,0,1,0], 

     [0,0,0,0,0,0,0,1],[0,0,0,0,0,0,0,1]]                                

ci = [0,0,1,0] 

s1 = [0,1,0,1] 

s2 = [0,0,1,1] 

 

Invoking the function test with these arguments enables 

the execution of the function WALU four times. At each 

time, the function WALU performs a different operation on 

different values of the two data words as and bs. As a result, 

we get a list containing the result of the four operations 

performed by the function WALU. 

  (co,res) = [(0,[0,0,0,0,0,0,1,1]), 

              (0,[0,0,0,0,0,0,1,1]),  

                (1,[1,1,1,1,1,1,1,0]), 

              (0,[0,0,0,0,0,1,0,0])]                                                   

 

V. CONCLUSION 

In this paper we have presented a methodology for digi-

tal circuits design based on SysML and the functional lan-

guage Clean. It involves a modeling technique based on two 

SysML structural diagrams BDD and IBD and a technique 

for automatic Clean code generation from a SysML model 

(in XMI file format). This transformation is performed by 

our proper tool CleanSG. The design methodology has been 

evaluated by means of a typical case study, involving a 

digital circuit say an ALU where a Clean code has been 

derived from SysML model describing this ALU.  

This work gives a first contribution towards a research 

topic that has not been investigated so far, namely UML to 

functional HDLs. It combines the powerful features of 

SysML and the functional language Clean. Beside the avail-

ability of SysML documentation and tools, our modeling 

technic is simple and easy to use. The automatic code gen-

eration from an electronic schema and the reuse of the saved 

specifications in the library minimize the circuit design time. 

Saving the generated specifications in the library enriches it 

every time we design a circuit. The generated functional 

circuit specification gives the possibility to simulate the 

circuit. 

Our future work will focus on enhancements toward 

modeling with SysML and code generation, extensions for 

formal verification, although the complete project proceeds 

toward Functional Graph Rewriting Systems. 
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